
Correctness Preserving Transformations
for Network Protocol Compilers

Tommy M. McGuire and Mohamed G. Gouda
Department of Computer Sciences
The University of Texas at Austin

October 31, 2001

Abstract

Strong abstractions provide the best basis for designing network protocols, but are
difficult or inefficient to implement. We claim that a network protocol specified
based on strong abstractions can be transformed into an implementation based on
weaker abstractions which preserves the properties of the original specification.
Further, this transformation can be done automatically and will produce efficient
implementations. An open question is the possible interaction between the strong
and weak abstractions and the performance of the system.



The problem of protocol design

The best way to design a network protocol is by basing the specification on strong
abstractions. These strong abstractions make the protocol simple to understand
and explain. Strong abstractions, however, are difficult and inefficient to imple-
ment.

For example, one useful abstraction[5] for protocol design is high-level, com-
plex actions that are atomic across the whole protocol—an action can be executed
in one process without interacting with other actions in the same or different pro-
cesses. This abstraction makes design easier, by avoiding questions of simul-
taneity and synchronization between different actions. High-level atomicity also
reduces the number of states of the protocol that need to be examined to ensure
the correctness of the protocol. Unfortunately, this abstraction is very difficult
to implement, since it requires global synchronization, and can lead to inefficient
implementations.

High-level global atomicity can be weakened to local atomicity within a pro-
cess with additional restrictions on inter-process communication. Fortunately,
these restrictions are simply those of message-passing protocols in general: all
inter-process communication consists of messages sent between the processes. As
a result, the weaker abstraction is much easier to implement. Unfortunately, the
weakened atomicity abstraction severely impairs the analysis and understanding
of the specification, by greatly increasing the number of states that the protocol
can be in. The weaker assumption is as inappropriate for protocol design as the
stronger assumption is for protocol implementation.

The goal of our research[7] into correctness preserving transformations is to
determine which strong abstractions can be weakened or modified and which need
to be kept intact in order to preserve the properties of the protocol. Our research
is similar to the work on parallelizing compilers for numerical analysis[3]. In that
case, the algorithm is originally written for sequential execution and then auto-
matically transformed to a form suitable for parallel execution. The parallelizing
compiler determines which dependencies can be weakened while preserving the
result of the computation.

Our approach is especially important to secure[6] and real-time[2] protocols.
Secure protocols require formal analysis in order to provide confidence in the
system in which the protocol plays a part; less rigorous approaches do not provide
sufficient assurance. Real-time protocols have stringent requirements, which can
be understood best by using an abstract model; without such a model it is difficult
to even express the requirements.

1



Protocol development

While it is true that for any system, a small change in a specification can cause
significant changes in behavior, both in terms of correctness and in terms of perfor-
mance, this is more apparent in the network protocol domain. Network protocols
need to preserve the end-to-end properties of the system as well as tolerate partial
failure and avoid deadlocks while not adversely interacting with other protocols
using the same communication medium. Under these circumstances, the effects
of a change on the behavior of a system are rarely apparent. The correctness of
a network protocol can be evaluated from a suitable formal specification but the
performance in general cannot be, due to outside factors such as the interaction
with other protocols in the environment.

As a result, experience with the protocol both in simulations and in running
environments is an important part of the protocol development process. A cyclic
approach is needed, beginning with the specification of a correct protocol, con-
tinuing with the transformation of that specification into an implementation and
finishing with with the feedback from the implementation into the specification. A
rapid turnaround of this cycle from specification to implementation is desirable.
However, this rapid turnaround has proven difficult to achieve. Since protocol
evaluation can be done in parallel, especially by simulations, the limiting factors
are the specification and transformation to an implementation.

We believe that strong abstractions significantly ease and improve protocol
specification. In order to support the cyclic protocol design process, though, the
transformations which map a specification based on strong assumptions to an im-
plementation based on weaker assumptions should be mechanical, embodied in
a protocol compiler. This compiler, when given a protocol specification that sat-
isfies a set of properties according to a set of strong assumptions, will produce
an implementation which satisfies those same properties and which is based on
weaker assumptions.

One remaining question about the automatic transformation of protocols is if
there is a trade off in the protocol’s performance based on the assumptions which
are kept or modified. Implementation efficiency is an important goal for the trans-
formation from a protocol specification, and there is no obvious reason why the
performance of a transformed protocol would be objectionable[1, 4]. However,
there may be an interaction between the performance of the protocol and the re-
strictions made by the transformation which may call for alterations of those re-
strictions, of the transformation process, of the properties of the protocol, and
potentially for the stronger assumptions on which the protocol design is based.

2



One important point is that, even if the performance of a protocol implemen-
tation is unacceptable and no alterations are acceptable, the specification of the
protocol based on strong assumptions is still valid and the optimization of the
protocol, by hand if necessary, is made much easier by the existing, working im-
plementation, even though it is inefficient.

Conclusion

The success of our approach would allow us to use strong abstractions to leverage
protocol designer skill into more, higher-quality systems. The strong abstractions
will increase the productivity of the designer as well as making the design of cor-
rect protocols easier while at the same time the transformation process will pro-
duce high-performance, correct implementations which can be used themselves or
be the basis of further optimizations. By easing the task of designing and imple-
menting protocols, this work will allow more systems to take advantage of more
complex protocols, such as self-stabilizing and peer-to-peer protocols which have
better failure handling and scaling properties.

References

[1] M.B. Abbott and L.L. Peterson. A Language-Based Approach to Protocol
Implementation.IEEE/ACM Transactions on Networking, 1(1), 1993.

[2] Audio-Video Transport Working Group, H. Schulzrinne, S. Casner, R. Fre-
dreck, and V. Jacobson. RTP: A Transport Protocol for Real-time Applica-
tions. RFC 1889, 1996.

[3] U. Banerjee, R. Eigenmann, A. Nicolau, and D.A. Padua. Automatic program
parallelization.Proceedings of the IEEE, 81(2), 1993.

[4] C. Castelluccia, W. Dabbous, and S. O’Malley. Generating Efficient Protocol
Code from an Abstract Specification.Proceedings of the ACM SIGCOMM
1996 Conference, 1996.

[5] M.G. Gouda.Elements of Network Protocol Design.John Wiley & Sons,
1998.

3



[6] M.G. Gouda, M. El-Nozahy, C.-T. Huang, and T.M. McGuire. Hop Integrity
in Computer Networks.Proceedings of the 8th IEEE International Confer-
ence on Networking Protocols, 2000.

[7] T.M. McGuire. Correct Implementation of Network Pro-
tocols from Abstract Specifications. Dissertation pro-
posal, The University of Texas at Austin, 2000.
http://www.cs.utexas.edu/users/mcguire/research/ .

4


